
Generating Adversarial Examples Using Uniform Pixels and
Neighbor Aggregation

Glenn Paul P. Gara∗†
College of Computer Studies

University of the Immaculate Conception
Davao City, Philippines

ggara@uic.edu.ph

Arnulfo P. Azcarraga
College of Computer Studies

De La Salle University
Manila, Philippines

arnulfo.azcarracaga@dlsu.edu.ph

ABSTRACT
Deep neural networks have gained popularity due to its excep-
tional performance on several challenging tasks such as image
classification, object detection, semantic segmentation, and image
generation. Unfortunately, these networks are highly vulnerable to
carefully crafted human imperceptible perturbations based on so-
called adversarial examples. Adversarial examples have been used
to mislead deep neural networks into predicting an incorrect output
(i.e. category, label or class), sometimes with high confidence. Most
approaches in constructing adversarial inputs require access to the
gradients of the network, which is applicable only to gradient-based
techniques. Others require only some access to the output function
making these methods model-agnostic. In this work, we propose
a mechanism that considers the neural network as a black-box by
assuming that the network output is observed based only on the
examined inputs. We focus our experiments on a model-agnostic
adversarial example generation. Specifically, without exploiting the
network gradients, we show that by aggregating neighboring im-
ages of an input image represented within a low dimensional input
space and combine this with a perturbation technique referred to
as “uniform pixels”, both convolutional neural network and vanilla
neural network are vulnerable to incorrect predictions. As such, the
proposed method can serve as a basis for designing more robust
neural network models.

CCS CONCEPTS
• Computing methodologies→ Neural networks;

KEYWORDS
Adversarial example, image perturbation, neighbor aggregation,
uniform pixels
ACM Reference Format:
Glenn Paul P. Gara and Arnulfo P. Azcarraga. 2020. Generating Adversarial
Examples Using Uniform Pixels and Neighbor Aggregation. In Proceed-
ings of Philippine Computing Science Congress (PCSC2020). City of Baguio,
Philippines, 7 pages.
∗Also with, College of Computer Studies, De La Salle University.
†Also with, Center for Complexity and Emerging Technologies, De La Salle University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PCSC2020, March 2020, City of Baguio, Philippines
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Deep neural networks have increased in popularity due to its re-
markable performance on challenging tasks such as image classifi-
cation [5], object detection [8], semantic segmentation [18], image
generation [6], etc. Despite the significant success of deep neural
networks, literatures have shown that it is susceptible to adversarial
examples (or known as adversarial attacks) [4]. These kinds of at-
tacks may cause a deep neural network model to predict incorrectly
even if the input images are visually similar from trained samples.
The attack is generated by intentionally adding a perturbation,
which is imperceptible to human perception. This problem was
first introduced by [16], threatening safety-critical systems such
as medical diagnosis systems [2] and self-driving cars [14]. In the
case of medical image analysis systems, an attack happens when
an original image is modified to generate an adversarial image in
such a way that the modification is human-imperceptible. Thus, a
neural network predicts its class incorrectly even if both the origi-
nal and the adversarial image are visually identical. In self-driving
cars, an attack happens when an attacker creates minimal changes
on the stop sign that is human-imperceptible. As a result, the car
predicts it as a turn-left sign, which is a decision causing a serious
traffic accident. Therefore, it becomes a major concern for a neural
network in terms of safety issues.

Adversarial attacks are of two types in terms of the adversary’s
knowledge: the white-box attack [19], and the black-box attack
[1]. White-box attack assumes that the attacker is knowledgeable
about everything on the trained neural network model, such as the
architecture, hyperparameters, training data, learning algorithm,
and model parameters. The attacker can effectively design an im-
age perturbation by leveraging these kinds of knowledge acquired
from the model. On the other hand, the black-box attack assumes
that the attacker does not have any knowledge about the trained
neural network model. The attacker acts only as a standard user
knowing only the output of the model. Indeed, one can generate an
adversarial attack based solely on the model’s result, such as the
label and confidence score. There are two ways to craft a perturba-
tion for an adversarial example: the individual attack and universal
attack. The individual attack creates a perturbation for every clean
input sample. The universal attack, on the other hand, creates a
perturbation that is universal for the entire dataset, which means
that only one perturbation is crafted and is applied for every clean
input sample. Majority of the current attacks generate perturbation
independently for each sample. However, it is easy to deploy ad-
versarial examples in a real-world scenario when using universal
perturbations [17].

PCSC2020, March 2020, City of Baguio, Philippines Glenn Paul P. Gara and Arnulfo P. Azcarraga

Figure 1: An overview of an attack to a neural network using a generated adversarial example from an input image (origi-
nal image). Both the input image and adversarial example are visually similar to the character "7", yet the neural network
misclassifies the latter as character "5". This means that a neural network is successfully fooled using the perturbed image.

Machine learning researchers proposed significant number of
research on adversarial attacks since [16] discuss the vulnerability
of neural networks when tested using adversarial examples. An
adversarial crafting framework proposed by [13] is divided into two
steps, namely the direction sensitivity estimation step and pertur-
bation selection step, which serve as the basis of various proposed
adversarial attack methods. One of the known attacks is the Fast
Gradient Sign Method (FGSM) [3], which can be done by adding a
noise through the loss gradients of the neural network with respect
to the input data. The magnitude of the noise is controlled by an
𝜖 , which is normally a small scalar value. A system called Deep-
Fool [11] studied the decision boundary of a classifier around a
certain data point. The authors were trying to look for a patch that
will make the data point go beyond the decision boundary for the
classifier to give a wrong classification for an input sample. Their
results show that DNN classifiers are not robust enough when faced
with small perturbations. A black-box attack introduced by [12]
utilizes a novel local-search based mechanism to generate a nu-
merical approximation to the gradients of the network, to be used
in constructing a small set of pixels to perturb an image. Another
method to generate an adversarial example was developed by [10],
which aims to build a universal image-agnostic perturbation across
training samples. They demonstrated that their universal perturba-
tions can generalize well throughout state-of-the-art deep neural
networks. A one-pixel attack proposed by [15] shows that deep
neural networks can be fooled where only one pixel value is used
to modify an image and which does not require any information
about the model.

In this work, we propose a new mechanism to generate adversar-
ial examples by aggregating the neighbors of an input image (test
data) from a low dimensional input space, combined with an attack
that applies the same value to each feature, referred to as a "uniform
pixels" attack. We also examine the robustness of a Convolutional
Neural Network (CNN) and a Vanilla Neural Network (VNN) given
calculated attacks using the generated adversarial examples.

The rest of the paper is organized as follows. In Section 2, the
methods for generating adversarial examples are presented, which
includes the neighbor aggregation technique together with a com-
bined attack called "uniform pixels". In Section 3, the experimental
set-up and results are presented. In Section 4, we discuss the results
and the robustness of CNN and VNN on the generated adversarial
examples.

2 METHODS
In this section, we describe how an adversarial attack happens on
neural network models. It follows a discussion of two major steps to
produce an image perturbation; neighbor aggregation and uniform
pixels. Then, we present the proposed method of generating an
adversarial example.

2.1 Adversarial attack
An adversarial attack happens when an attacker uses a perturbed
image as an input to a machine learningmodel, crafted intentionally
to cause themodel tomake amistake in prediction. Fig. 1 shows how
an attack happens, particularly in fooling a neural network model
to misclassify an image with a human-imperceptible perturbation.
The model correctly classifies the original image (input image) from
the test images. Using the same set of test image, adversarial attacks
(examples) are generated to mislead the neural network model by
adding a crafted perturbation. The goal is to make the model predict
the adversarial example incorrectly, even if both the original image
and the adversarial example are visually similar.

2.2 Neighbor aggregation
Aggregation refers to combining features of multiple samples in
order to generate a new sample leveraging the features of other
samples. Neighbor aggregation is one of the first steps to generate
an image perturbation. As illustrated in Fig. 2, input images (test
data) are mapped onto a low dimensional space to easily determine

Generating Adversarial Examples Using Uniform Pixels and Neighbor Aggregation PCSC2020, March 2020, City of Baguio, Philippines

Figure 2: The first step to produce an image perturbation is the neighbor aggregation technique, wherein all input images
will be represented in a low dimensional space using t-SNE. Based on the specified distance, all images within the specified
distance threshold are merged together using a mean score.

the neighbors of each test image. A t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [9] was used to map test images from a
high-dimensional input image space to a two-dimensional space.
An attacker can specify a distance threshold to determine which
images, within the radius specified by the distance threshold, are
going to constitute the set of neighboring images that are to be
merged. Merging is done by simply calculating the mean of each
pixel. The aggregated image, referred to as output 𝛼 , is the first step
of the generated perturbation. These aggregated images are usually
blurry, but with some perceptible pattern that still resembles the
original raw test image at the center of the neighborhood.

2.3 Uniform pixels
An attacker sets a set of pixel values (features) having the same
value as a second step of generating a perturbation. We call these
features as uniform pixels since they have equal or uniform values.
Uniform pixels is an𝑛𝑥𝑛 image with one channel and the same pixel
values resembling a blank image. Fig. 3 illustrates the structure of
uniform pixels which is set using the notation 𝛽 . The dimension of
uniform pixels must be equal to the dimension of an input sample
𝐼 and aggregated neighboring images 𝛼 .

Figure 3: An example of 5x5 uniform pixels with a value of
𝛽 = 5. The dimension of uniform pixels varies on the dimen-
sion of an input sample 𝐼 .

2.4 Adversarial example generation
The goal is to produce a final image perturbation 𝐼 ′ using the neigh-
bor aggregation and uniform pixels mechanisms. As illustrated in
Fig. 4, the neighbor aggregation technique and uniform pixels are
combined, and adding it to an input image 𝐼 . An 𝜖 controls the

magnitude of a perturbed image to an image 𝐼 . Equation 1 is the
formula to generate the final output of an adversarial example.

𝐼 ′ = 𝐼 + 𝜖 ∗ (𝛼 + 𝛽) (1)

Algorithm 1 show the pseudocode of the proposed mechanism.
The algorithm expects input images 𝐼 which are test images and an
expected output of perturbed test images. The algorithm initializes
the parameters 𝜖 , 𝑑 , 𝛽 , 𝐼 ′ where:
• 𝜖 = real number that is less than or equal to 1, controlling
the image perturbation magnitude
• 𝑑 = an integer which refers to the distance threshold of
neighbors to aggregate
• 𝛽 =𝑚 ×𝑚 array containing the same or uniform values
• 𝐼 ′ = an empty list where the perturbed image will be stored

For every iteration of test images, a list of neighbors of 𝐼 within a
low dimensional representation (t-SNE) are identified based on the
specified threshold 𝑑 using the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 () function. 𝑁 holds the set
of defined neighboring images. Within the function 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (),
all neighbors are aggregated by calculating the mean score of pixel
values. The resulting image from an aggregated neighboring images
assigns to 𝛼 . The image perturbation is the sum of 𝛼 and 𝛽 . A
perturbation 𝑃 adds to an image 𝐼 with a magnitude controlled by
𝜖 . The resulting adversarial image assigns to 𝐼 ′

𝑗
and is stored in 𝐼 ′.

Finally, the algorithm outputs all generated adversarial examples,
which are test images combined with a crafted image perturbation.

3 EXPERIMENTS
3.1 Neural network architecture
We consider two simple neural networks, Convolutional Neural Net-
work and Vanilla Neural Network (also known as Fully-Connected
Network). These two neural networks were trained using the same
dataset and used as classifier models for our experiments on the
generated adversarial examples. Table 1 and 2 are the specifications
of the two neural network architectures. CNN and VNN are both

PCSC2020, March 2020, City of Baguio, Philippines Glenn Paul P. Gara and Arnulfo P. Azcarraga

Figure 4: A neighbor aggregation 𝛼 technique combined with a uniform pixel 𝛽 mechanism to generate a perturbed image 𝐼 ′.

Algorithm 1: Generating adversarial examples from a test-
ing set via neighbor aggregation and uniform pixels
Input :A finite list 𝐼 = [𝐼1, 𝐼2, . . . , 𝐼𝑛] of test images
Output :A finite list 𝐼 ′ = [𝐼 ′1, 𝐼

′
2, . . . , 𝐼

′
𝑛] of perturbed images

1 𝜖 := 𝑖; 𝑖 ∈ R | 𝑖 ≤ 1
2 𝑑 := 𝑘 ;𝑘 ∈ Z | 𝑘 ≥ 1
3 𝛽 :=𝑚 ×𝑚 uniform values
4 𝐼 ′ = [⊘]
5 for each 𝐼 𝑗 in 𝐼 do
6 𝑁 𝑗 ← neighbor(𝐼 𝑗 , 𝑑)

7 neighbor(𝐼 𝑗 , 𝑑) = set of neighboring images 𝐼 𝑗 within
the distance 𝑑 using t-SNE representation

8 𝛼 𝑗 ← aggregate(𝑁 𝑗)

9 aggregate(𝑁 𝑗) = an𝑚 ×𝑚 mean score pixel values of
𝑁 𝑗

10 𝑃 𝑗 = 𝛼 𝑗 + 𝛽
11 𝑃 𝑗 = image perturbation combining neighbor

aggregation and uniform pixels for image 𝐼 𝑗
12 𝐼 ′

𝑗
← 𝐼 𝑗 + 𝜖 ∗ 𝑃 𝑗

13 𝐼 ′
𝑗
= perturbed image 𝐼 𝑗 where 𝜖 controls the magnitude

of 𝑃 𝑗
14 𝐼 ′ ← 𝐼 ′

𝑗

15 return 𝐼 ′

Table 1: Vanilla Neural Network architecture for MNIST
handwritten digit dataset experiment

Layer (type) Output Shape Parameters

FC Linear (1, 200) 157,000
ReLU (1, 200)
FC Linear (1, 10) 2,010
Softmax (1, 10)

trained using the same training parameters (learning rate: 0.001,
number of epochs: 5, batch size: 1, optimizer: Adam) both having
significant results on test data.

Table 2: Convolutional Neural Network architecture for
MNIST handwritten digit dataset experiment

Layer (type) Output Shape Parameters

Conv2d (1, 16, 28, 28) 416
BatchNorm2d (1, 16, 28, 28) 32
ReLU (1, 16, 28, 28)
MaxPool2d (1, 16, 14, 14)
Conv2d (1, 32, 14, 14) 12,832
BatchNorm2d (1, 32, 14, 14) 64
ReLU (1, 32, 14, 14)
MaxPool2d (1, 32, 7, 7)
FC Linear (1, 10) 15,690
Softmax (1, 10)

3.2 Dataset
Our experiments used a handwritten digits MNIST dataset [7]. The
dataset is famously known for training and testing various machine
learning models. The dataset contains 60,000 training images and
10,000 testing images. For this experiment, we used the 10,000
testing images to generate adversarial images and serve as a test
set again to determine the robustness of the neural network.

3.3 Neural network models performance on
clean dataset

Before testing the trained CNN and VNN on adversarial images,
each ensures that they must be able to generalize significantly on a
clean dataset. We conducted a test using the test set and based on
the results, the test accuracy of CNN and VNN are 0.99 and 0.97,
respectively.

4 EXPERIMENTAL RESULTS
Our first experiment is to know the robustness of CNN and VNN
by utilizing only a neighbor aggregation technique by gradually
increasing the distance threshold 𝑑 and perturbation magnitude 𝜖 .
Tables 3 and 4 are the results of our experiment for neighbor aggre-
gation without exploiting uniform pixels mechanism. Though the

Generating Adversarial Examples Using Uniform Pixels and Neighbor Aggregation PCSC2020, March 2020, City of Baguio, Philippines

Table 3: VNN fooling rates (percentage) using neighbor ag-
gregation (without uniform pixels) on increasing distance
threshold 𝑑 and perturbation magnitude 𝜖

𝜖 Distance threshold 𝑑
1 2 3 4 5 6 7 8 9 10

0.1 2.98 2.94 2.94 2.95 2.95 2.96 2.97 2.97 2.97 2.98
0.2 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.97 2.98 2.98
0.3 2.98 2.97 2.97 2.98 2.98 2.98 2.99 3.0 3.0 3.01
0.4 3.01 3.01 3.02 3.02 3.02 3.03 3.04 3.04 3.05 3.06
0.5 3.06 3.06 3.06 3.07 3.07 3.08 3.09 3.10 3.11 3.12
0.6 3.12 3.12 3.13 3.14 3.14 3.15 3.16 3.17 3.19 3.20
0.7 3.20 3.20 3.20 3.21 3.22 3.23 3.24 3.25 3.27 3.28
0.8 3.28 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.36 3.37
0.9 3.37 3.37 3.38 3.39 3.40 3.41 3.42 3.44 3.45 3.47
1.0 3.46 3.47 3.47 3.48 3.49 3.50 3.51 3.53 3.55 3.56

Table 4: CNN fooling rates (percentage) using neighbor ag-
gregation (without uniform pixels) on increasing distance
threshold 𝑑 and perturbation magnitude 𝜖

𝜖 Distance threshold 𝑑
1 2 3 4 5 6 7 8 9 10

0.1 1.22 1.23 1.25 1.27 1.28 1.28 1.27 1.27 1.27 1.28
0.2 1.27 1.27 1.27 1.28 1.28 1.28 1.29 1.29 1.29 1.29
0.3 1.30 1.30 1.30 1.31 1.31 1.32 1.33 1.33 1.34 1.34
0.4 1.35 1.35 1.36 1.37 1.38 1.39 1.40 1.40 1.41 1.41
0.5 1.41 1.42 1.43 1.44 1.45 1.47 1.48 1.49 1.49 1.50
0.6 1.50 1.51 1.52 1.54 1.55 1.56 1.57 1.58 1.59 1.59
0.7 1.60 1.61 1.62 1.63 1.65 1.66 1.67 1.68 1.69 1.70
0.8 1.71 1.72 1.73 1.74 1.76 1.77 1.78 1.80 1.81 1.82
0.9 1.83 1.84 1.85 1.86 1.88 1.89 1.90 1.92 1.93 1.94
1.0 1.95 1.96 1.97 1.98 2.0 2.01 2.02 2.04 2.05 2.06

technique can already fool the classifier on some of the generated ad-
versarial images, the misclassification generalization performance
is not promising. It appears to have a minimal increase in fooling
rates as we increase 𝑑 and 𝜖 at the same time. The results also
show that VNN is more prone in misclassifying adversarial exam-
ples than CNN since the percentage of misclassification results in
VNN is a little higher compared to CNN. Based on the results, we
consider transforming the image perturbation by adding uniform
pixels to our neighbor aggregation technique. Tables 5 and 6 shows
the results of adding uniform pixels mechanism. Interestingly, it
increases the percentage misclassification results on both models as
we increase 𝑑 and 𝜖 . For this experiment, we chose uniform pixels
𝛽 = 5 due to its promising results. The results show that both VNN
and CNN generalizes significantly in misclassifying the generated
adversarial examples because of high fooling rate results. Similar to
the first experiment, the fooling rate increases as we increase the
𝑑 and 𝜖 at once with the highest rate of 86.97 for VNN and 62.70
for CNN. The results suggest that the proposed mechanism can be
used to generate an adversarial example to fool a neural network.
Figures 5 and 6 shows the generated adversarial examples using

Table 5: VNN fooling rates (percentage) using both neighbor
aggregation and uniform pixels (𝛽 = 5) on increasing dis-
tance threshold 𝑑 and perturbation magnitude 𝜖

𝜖 Distance threshold 𝑑
1 2 3 4 5 6 7 8 9 10

0.1 67.66 67.79 67.88 67.94 68.00 68.04 68.10 68.15 68.20 68.24
0.2 69.73 70.98 72.04 72.94 73.73 74.42 75.04 75.59 76.09 76.54
0.3 77.12 77.65 78.13 78.58 79.00 79.38 79.74 80.07 80.38 80.67
0.4 80.96 81.23 81.48 81.72 81.95 82.16 82.36 82.56 82.74 82.91
0.5 83.08 83.23 83.38 83.53 83.66 83.79 83.92 84.04 84.15 84.27
0.6 84.37 84.47 84.57 84.67 84.76 84.85 84.93 85.01 85.09 85.17
0.7 85.24 85.31 85.38 85.45 85.51 85.58 85.64 85.70 85.76 85.81
0.8 85.87 85.92 85.97 86.02 86.07 86.12 86.16 86.21 86.25 86.30
0.9 86.34 86.38 86.42 86.46 86.49 86.53 86.57 86.60 86.64 86.67
1.0 86.70 86.74 86.77 86.80 86.83 86.86 86.89 86.92 86.95 86.97

Table 6: CNN fooling rates (percentage) using both neighbor
aggregation and uniform pixels (𝛽 = 5) on increasing dis-
tance threshold 𝑑 and perturbation magnitude 𝜖

𝜖 Distance threshold 𝑑
1 2 3 4 5 6 7 8 9 10

0.1 4.41 4.50 4.56 4.61 4.65 4.69 4.72 4.74 4.76 4.78
0.2 5.59 6.29 6.90 7.44 7.92 8.36 8.75 9.12 9.45 9.75
0.3 10.65 11.47 12.24 12.96 13.63 14.25 14.85 15.40 15.93 16.44
0.4 17.55 18.63 19.67 20.68 21.64 22.55 23.43 24.28 25.10 25.88
0.5 26.95 28.02 29.07 30.09 31.09 32.05 32.99 33.91 34.80 35.66
0.6 36.59 37.52 38.44 39.34 40.21 41.06 41.90 42.70 43.49 44.25
0.7 44.99 45.72 46.43 47.11 47.78 48.43 49.05 49.66 50.25 50.83
0.8 51.38 51.92 52.45 52.97 53.46 53.95 54.42 54.89 55.34 55.77
0.9 56.20 56.62 57.03 57.42 57.81 58.19 58.56 58.92 59.28 59.62
1.0 59.96 60.29 60.62 60.93 61.24 61.55 61.85 62.14 62.42 62.70

the proposed method on VNN and CNN, respectively, with a class
prediction result above on each image.

5 CONCLUSION
In this paper, we proposed a new black-box adversarial example
generation mechanism to fool a neural network. We created two
simple neural network models where we can test our generated
adversarial examples. The results show that a neighbor aggrega-
tion mechanism combined with a uniform pixel can be used to
misclassify our test data effectively. Our experiments show initial
results where both models are sensitive to the adversarial examples
using the proposed method. However, VNN shows high sensitivity
than CNN. The results of our proposed method suggest that it can
be used to craft adversarial examples to design extremely robust
neural network models.

6 FUTUREWORKS
In this study, we proposed a black-box mechanism to generate
adversarial examples to fool neural network models. This study
also serves as initial experiments and results on the performance of
our proposed method. In our future work, we will conduct several
experiments on neighbor aggregation and different uniform pixel

PCSC2020, March 2020, City of Baguio, Philippines Glenn Paul P. Gara and Arnulfo P. Azcarraga

Figure 5: Generated adversarial example of Vanilla Neural Network as we increase the distance 𝑑 (1 to 10) and perturbation
magnitude 𝜖 (0.1 to 1.0) with a uniform pixels 𝛽 = 5. Values above each image are the predicted class labels. The correct class
label is 5 as predicted by VNN before applying an image perturbation.

values on neural network models. We are looking forward also
to apply our proposed method on state-of-the-art deep learning
models and see how it affects its robustness. Also, we will use more
benchmark datasets and see how they perform when applied to
images with three channels (RGB). A comparison with other black-
box adversarial example generation will also be investigated as a
follow-up on this study.

REFERENCES
[1] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019.

Improving Black-box Adversarial Attacks with a Transfer-based Prior. In
Advances in Neural Information Processing Systems 32, H Wallach, H Larochelle,
A Beygelzimer, F d\textquotesingle Alché-Buc, E Fox, and R Garnett
(Eds.). Curran Associates, Inc., 10932–10942. http://papers.nips.cc/paper/
9275-improving-black-box-adversarial-attacks-with-a-transfer-based-prior.
pdf

[2] Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L
Beam, and Isaac S Kohane. 2019. Adversarial attacks on medical machine learning.
363, 6433 (2019), 1287–1289.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[4] Eric Heim. 2019. Constrained Generative Adversarial Networks for Interactive
Image Generation. (4 2019). http://arxiv.org/abs/1904.02526

[5] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and others. 2019.
Gpipe: Efficient training of giant neural networks using pipeline parallelism. In
Advances in Neural Information Processing Systems. 103–112.

[6] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator archi-
tecture for generative adversarial networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4401–4410.

[7] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[8] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang, Qijie Zhao, Zhi Tang,
and Haibin Ling. 2019. CBNet: A Novel Composite Backbone Network Architec-
ture for Object Detection. (9 2019). http://arxiv.org/abs/1909.03625

http://papers.nips.cc/paper/9275-improving-black-box-adversarial-attacks-with-a-transfer-based-prior.pdf
http://papers.nips.cc/paper/9275-improving-black-box-adversarial-attacks-with-a-transfer-based-prior.pdf
http://papers.nips.cc/paper/9275-improving-black-box-adversarial-attacks-with-a-transfer-based-prior.pdf
http://arxiv.org/abs/1904.02526
http://arxiv.org/abs/1909.03625

Generating Adversarial Examples Using Uniform Pixels and Neighbor Aggregation PCSC2020, March 2020, City of Baguio, Philippines

Figure 6: Generated adversarial example of Convolutional Neural Network as we increase the distance 𝑑 (1 to 10) and pertur-
bation magnitude 𝜖 (0.1 to 1.0) with a uniform pixels 𝛽 = 5. Values above each image are the predicted class labels. The correct
class label is 5 as predicted by CNN before applying an image perturbation.

[9] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[10] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1765–1773.

[11] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2574–2582.

[12] Nina Narodytska and Shiva Kasiviswanathan. 2017. Simple black-box adversarial
attacks on deep neural networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). IEEE, 1310–1318.

[13] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 372–387.

[14] Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and
Prateek Mittal. 2018. Darts: Deceiving autonomous cars with toxic signs. (2018).

[15] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolutionary
Computation (2019).

[16] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
(12 2013). http://arxiv.org/abs/1312.6199

[17] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems (2019).

[18] Yuhui Yuan, Xilin Chen, and Jingdong Wang. 2019. Object-Contextual Represen-
tations for Semantic Segmentation. (9 2019). http://arxiv.org/abs/1909.11065

[19] Tianhang Zheng, Changyou Chen, and Kui Ren. 2019. Distributionally adversarial
attack. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
2253–2260.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1909.11065

	Abstract
	1 Introduction
	2 Methods
	2.1 Adversarial attack
	2.2 Neighbor aggregation
	2.3 Uniform pixels
	2.4 Adversarial example generation

	3 Experiments
	3.1 Neural network architecture
	3.2 Dataset
	3.3 Neural network models performance on clean dataset

	4 Experimental Results
	5 Conclusion
	6 Future Works
	References

