
RISC-Based Simulation of Longest Common
Subsequence Algorithm in MIPS64 Simulators

Glenn Paul P. Gara∗ †, Mark Phil B. Pacot∗ ‡, Roger Luis T. Uy∗
∗College of Computer Studies, De La Salle University, Manila, Philippines

†Information Technology Education Program, University of the Immaculate Conception, Davao City, Philippines
‡College of Engineering and Information Technology, Caraga State University, Butuan City, Philippines

{glenn gara, mark phil pacot, roger.uy}@dlsu.edu.ph

Abstract—The longest common subsequence (LCS) is an es-
sential technique in the sequence alignment. By deleting zero or
more symbols, it determines one of the longest subsequences in
a sequence. This paper described a simulation of the algorithm
using the EduMIPS64 and MIPSers simulators where the latter
implements the most recent developments of MIPS64 instruction
sets. The method applied to solve the LCS in this study was the
first known solution invented by Wagner and Fischer. The authors
programmed the LCS on a RISC architecture and evaluated
the results of the test cases by observing the number of clock
cycles performed through the simulators. Results show that the
MIPSers executed the least number of clock cycles compared to
the EduMIPS64 simulator.

Index Terms—Longest common subsequence, MIPS64, Edu-
MIPS, MIPSers, RISC architecture

I. INTRODUCTION

The tools needed to interpret the enormous amount of
biological data particularly biosequences is in the realm of
computer science [1]. One of the most significant tasks of
bioinformatics in analyzing the sequences is the searching of
the longest common subsequence (LCS) [2]. Given the two
strings, it determines the longest subsequences by deleting zero
or more symbols [3]. Since the input size of biosequences
grows exponentially, a high-performance implementation of
LCS is necessary to increase throughput. Several implemen-
tations of the LCS were performed using sequential process-
ing. This type of processing is commonly used to program
instructions using a high-level programming language which
can execute only one instruction at a time [4].

Meanwhile, research work on the area of pipelining process-
ing particularly using MIPS64 instructions is scarce. Pipelining
is a technique whereby several instructions overlapped in
execution. It is a high-performance implementation, permitting
multiple instructions to be in some phase of execution at the
same time. MIPS is a RISC architecture that was designed
originally to support pipelining with ease of implementation. It
is based on the load/store architecture like the other RISC pro-
cessors [5], [6]. MIPS64 Instruction Set Architecture (ISA) is
commonly used in computer architecture programming due to
its orthogonality and suitability in the real-world application.
Currently, there are a couple of tools to simulate and visualize
the execution of MIPS64 instructions where EduMIPS64 is the
most used in the academia as a supporting tool for teaching. A
newly developed simulator called MIPSers supports the MIPS

release 6 and the only simulator today that can demonstrate
the major changes in instruction sets [7].

In this study, the researchers simulated MIPS64 instructions
in solving the longest common subsequence of the two se-
quences. It follows an assessment of the clock cycle results of
the algorithm using the EduMIPS64 and MIPSers simulators..

II. RELATED WORKS

The longest common subsequence is a classical method
based on the principle of dynamic programming [8]. It is a
useful technique in aligning biological sequences that mostly
implemented sequentially [9] . The study of [10] implemented
it using Java with dual match index to reduce significant
numbers of false positives in the match result. C# and VB.net
were utilized by [11] in implementing the LCS to identify the
succeeding movement of a user in a browser by classifying
user navigation patterns.

The LCS has also employed in C/C++ and Perl as a library
function for basic analysis toolkit for biological sequences
and they named the software BATS [12]. Due to numerous
sequential implementation of LCS, it is important to note that
the performance of it should be given high regard especially
when there is an increasing number of input size of sequences.
Thus, there are few ways on how this kind of algorithm can
be implemented to handle the inflation of input size, and
one is through parallelism. A study of [8] uses a GPU to
implement LCS algorithm. The technique exploited a large
number of processing units and the unique memory-accessing
properties to achieve high performance. A CUDA technology
for GPU implementation of the algorithm shows that it is faster
compared to its sequential implementation [13].

In this paper, the researchers make use of instruction-level
parallelism which is known as pipelining to implement the
algorithm in solving the longest common subsequence. They
used MIPS64 instruction sets to program the LCS through
a CPU simulator since the said type of parallelism is not
well-explored. The researchers examined the number of clock
cycles performed by EduMIPS64 and MIPSers simulators
using various test cases.

III. BACKGROUND

This section presents the method on how the LCS problem
was solved using the technique developed by Wagner and Fis-

Proceedings of TENCON 2018 - 2018 IEEE Region 10 Conference (Jeju, Korea, 28-31 October 2018)

0811978-1-5386-5457-6/18/$31.00 ©2018 IEEE

cher. It also presents the MIPS64 simulators used to simulate
the said technique.

A. Longest Common Subsequence
The longest common subsequence is not new in the field

of computer science and biology. Given the two sequences
M = [m1,m2, . . . ,mk] and N = [n1, n2, . . . , nk], the

output should be any one longest common subsequence having
maximum possible length [14]. For example, TUSDAY is the
longest common subsequence of TUESDAY and ThUrSDAY
[3]. There are two common approach in solving the LCS,
the recurrence and dynamic approach. The following is the
recurrence relation for solving LCS Problem:

x =

0 if m = 0 or n = 0

LCS[m− n, n− 1] + 1 if M [m] = N [n]

max(LCS[m− 1, n], LCS[m,n− 1]) if M [m] 6= N [n]

(1)

Equation 1 shows the relation extending the LCS length
for each prefix pair (M [1...m], N [1...n]). Here, LCS[m,n]
indicates the length of LCS(M [1...m], N [1...n]). The length
of LCS(M,N) is given by LCS(k, k). LCS(M,N) can be
obtained by backtracking from LCS(k, k).

The dynamic programming approach has two properties.
The first property considers two sequences M and N of
lengths m and n respectively. Let the elements of these
sequences are denoted as m1,m2...mk and n1, n2...nk respec-
tively. Then, LCS(Mm, Nn) = LCS(Mm−1, Nn−1) +mk if
mk = nk. The + refers to the final element of sequence M
appended to the prefix of sequence. This property states that
when the last element of sequence M and N are equal, it
can be pruned to make the sequences shorter. Thus, the LCS
is calculated on the remaining shorter sequences. Elements
are pruned until the final element of M and N sequences
are equal. LCS is computed on this shorter sequence and the
last element is appended to this LCS to obtain the final LCS
output. The second property states that if the last element of se-
quence M and N are not equal then the LCS is the maximum
of the sequences LCS(Mm−1, Nn) and LCS(Mm, Nn−1).

B. EduMIPS64 and MIPSers CPU Simulator

MIPS is an instruction set architecture (ISA) based on the
reduced instruction set computer (RISC) formed by MIPS
Technologies [15]. A simulator is necessary for simulating and
visualizing a MIPS code.

In this study, EduMIPS64 and MIPSers simulators perform
the simulation of the code. EduMIPS64 is popularly known
and is used in the academia to teach students in assembly
programming. It is also a visual debugger that allows the user
to see the status of registers and memory, the behavior of
instructions in the pipeline and how the CPU handled the stalls
[16].

A newly developed simulator called MIPSers is based on the
current release 6 version of MIPS. Only MIPSers support the
said release is considered the most important feature of a sim-
ulator. The version consists of major changes such as branch
without branch delay slots, multiplication and division without
the use of HI/LO registers, selection operations, floating point
comparison and bit swap operation. Similar to EduMIPS64,
It was developed to supplement the learning of the students

studying computer architecture. Such features would help the
program to minimize the number of clock cycles necessary to
improve its performance in terms of speed.

IV. IMPLEMENTATION

The authors developed a set of instructions to solve the
LCS problem of the given two sequences using the MIPS64
instruction sets. This study applied the first technique to solve
the LCS problem invented by [17] using the simulators that
can demonstrate the MIPS64 code. To leverage the release
6 version of MIPSers, the implementation of instructions are
different per simulator.

A. MIPS64 Programs

This section presents how the algorithm was implemented
using MIPS64 instructions sets.

1) Identify the string if it is empty: The first thing to do
is to check if the string is empty. Once the condition is true,
the program will return only a zero value. See figure 1 for the
MIPS64 implementation.

2) Comparing the last index of the strings: Based on the
first property in solving the LCS problem, if the last element
of the sequence M and N are equal, prune the last element to
make the sequences short. The LCS can be calculated using
the shorter sequences. The last elements are removed in M
and N sequences until it becomes equal. To get the final LCS,
the LCS is computed from the shorter sequence and append
the last element to this LCS. See figure 1 for the MIPS64
implementation.

3) Getting the maximum of sequences: If the last element
of the sequence M and N are not equal, then the LCS is
the maximum of LCS(Mm−1, Nn) and LCS(Mm, Nn−1)
sequences. See figure 2 for the MIPS64 implementation.

V. SIMULATION AND RESULTS

The MIPS64 assembly code in solving the longest common
subsequence problem has been successfully simulated using
EduMIPS64 and MIPSers simulators. To know if the code
returns the correct output, a test was conducted using the test
cases seen in table I.

Table II shows the LCS results and its corresponding cycle
count in EduMIPS64 and MIPSers. As the input strings

Proceedings of TENCON 2018 - 2018 IEEE Region 10 Conference (Jeju, Korea, 28-31 October 2018)

0812

1 con1:
2 dsubu r4,r4,r7
3 lb r15,l1(r4)
4 beq r15,r0,exit
5 dsubu r5,r5,r7
6 lb r16,l2(r5)
7 beq r16,r0,exit
8 daddiu r1,r0,#0000
9 daddiu r6,r0,#0000
10 dadd r12,r0,r4
11 dadd r13,r0,r5
12 lb r9,l1(r12)
13 lb r10,l2(r13)
14 beq r9,r10,saveLCS1
15 j addUp1
16 dadd r5,r0,r1 ; /*length of L2*/

(a) EduMIPS64

1 con1:
2 dsubu r4,r4,r7
3 lb r15,l1(r4)
4 beq r15,r0,exit
5 daddiu r31,r0,#1
6 dsubu r5,r5,r7
7 lb r16,l2(r5)
8 beq r16,r0,exit
9 daddiu r31,r0,#1
10 daddiu r1,r0,#0000
11 daddiu r6,r0,#0000
12 daddu r12,r0,r4
13 daddu r13,r0,r5
14 lb r9,l1(r12)
15 lb r10,l2(r13)
16 beq r9,r10,saveLCS1
17 daddiu r31,r0,#1
18 j addUp1
19 daddiu r31,r0,#1

(b) MIPSers

Fig. 1: Instructions to identify the string if it is empty and last index comparison

1 addUp1:
2 slt r22,r4,r5
3 beq r22,r7,up1.1
4 dadd r4,r4,r7
5 j loadA
6 up1.1:
7 dadd r5,r5,r7
8 j loadA
9 exit:
10 NOP

(a) EduMIPS64

1 addUp1:
2 slt r22,r4,r5
3 beq r22,r7,up11
4 daddiu r31,r0,#1
5 daddu r4,r4,r7
6 j loadA
7 daddiu r31,r0,#1
8 up11:
9 daddu r5,r5,r7
10 j loadA
11 daddiu r31,r0,#1
12 exit:
13 NOP

(b) MIPSers

Fig. 2: Instructions on getting the maximum sequences

TABLE I: Test cases

Test Case String 1 String 2

T1 NEMATODE EMPTY
T2 KNOWLEDGE BOTTLE
T3 AABAABAAB ABAB
T4 ABCBDAB BDCABDB
T5 MZJAWXU XMJYAUZ

increased its size, the clock cycles also increased. By ob-
serving the table, the two simulators performed differently
with regards to the number of cycles for each test case. Test
case 1 runs in EduMIPS64 with 506 cycles and 367 cycles
in MIPSers respectively. The number of cycles in test case 2

TABLE II: LCS and number of cycles

Test Case LCS EduMIPS64 Cycles MIPSers Cycles

T1 EMT 506 367
T2 OLE 803 621
T3 ABAB 386 268
T4 BCBDB 934 639
T5 MJAU 949 652

is significantly higher than the first test case with 803 cycles
in EduMIPS64 and 621 in MIPSers. Test case 3 executes the
least number of cycles with 386 in EduMIPS64 and 268 in
MIPSers. In test case 4, EduMIPS64 returns 934 cycles while
MIPSers has 639 cycles only. Lastly, test case 5 executes the

Proceedings of TENCON 2018 - 2018 IEEE Region 10 Conference (Jeju, Korea, 28-31 October 2018)

0813

most number of cycles where EduMIPS64 returns 949 while
MIPSers executes only with a cycle count of 652. Among
the two simulators, EduMIPS64 executes the most number of
cycles due to the difference of implementation of branch delay
slot leading to such control hazards (pipeline 1 and pipeline
2).

VI. CONCLUSION

Using the technique of Wagner and Fischer to solve the
LCS problem of the two sequences, the authors were able
to program it as a MIPS64 assembly code and simulated it
using the EduMIPS64 and MIPSers simulators. However, due
to the difference of code implementation especially in branch
delays, the results also has huge disparity. It turned out that
the MIPSers performed better compared to the EduMIPS64
simulator due to the major updates of instructions of the
former.

REFERENCES

[1] J. Cohen, “Bioinformatics — an introduction for computer scientists,”
ACM Computing Surveys (CSUR), vol. 36, no. 2, pp. 122–158, 2004.

[2] A. Gorbenko and V. Popov, “On the longest common subsequence
problem,” Applied Mathematical Sciences, vol. 6, no. 116, pp. 5781–
5787, 2012.

[3] N. Nakatsu, Y. Kambayashi, and S. Yajima, “A longest common sub-
sequence algorithm suitable for similar text strings,” Acta Informatica,
vol. 18, no. 2, pp. 171–179, 1982.

[4] A. Silver, “Rethinking CS101 [Resources Education],” IEEE Spectrum,
vol. 54, no. 4, p. 23, 2017.

[5] S. P. Dandamudi, Guide to RISC processors: for programmers and
engineers. Springer Science & Business Media, 2005.

[6] I. Pantazi-Mytarelli, “The history and use of pipelining computer archi-
tecture: MIPS pipelining implementation,” in Systems, Applications and
Technology Conference (LISAT), 2013 IEEE Long Island, 2013, pp. 1–7.

[7] N. M. D. Kho and R. L. Uy, “MIPSers: MIPS extension release
6 simulator,” 2017IEEE 9th International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control,
Environment and Management (HNICEM), pp. 1–6, 2017.

[8] J. Yang, Y. Xu, and Y. Shang, “An efficient parallel algorithm for longest
common subsequence problem on GPUs,” in Proceedings of the World
Congress on Engineering, vol. 1, 2010, pp. 499–504.

[9] A. Dhraief, R. Issaoui, and A. Belghith, “Parallel computing the Longest
Common Subsequence (LCS) on GPUs: efficiency and language suitabil-
ity,” in The 1st International Conference on Advanced Communications
and Computation (INFOCOMP), 2011.

[10] T. S. Han, S.-K. Ko, and J. Kang, “Efficient subsequence matching
using the longest common subsequence with a dual match index,”
in International Workshop on Machine Learning and Data Mining in
Pattern Recognition, 2007, pp. 585–600.

[11] M. Jalali, N. Mustapha, M. N. Sulaiman, and A. Mamat, “A recom-
mender system approach for classifying user navigation patterns using
longest common subsequence algorithm,” American Journal of Scientific
Research, vol. 4, pp. 17–27, 2009.

[12] R. Giancarlo, A. Siragusa, E. Siragusa, and F. Utro, “A basic analysis
toolkit for biological sequences,” Algorithms for Molecular Biology,
vol. 2, no. 1, p. 10, 2007.

[13] S. Deorowicz, “Solving longest common subsequence and related prob-
lems on graphical processing units,” Software: Practice and Experience,
vol. 40, no. 8, pp. 673–700, 2010.

[14] A. N. Arslan and Ö. EĞECIOĞLU, “Algorithms for the constrained
longest common subsequence problems,” International Journal of Foun-
dations of Computer Science, vol. 16, no. 06, pp. 1099–1109, 2005.

[15] I. S. MIPS IV, “Revision 3.2, MIPS Technologies,” Inc., entire publi-
cation submitted (Sep. 1995), 1995.

[16] A. Spadaccini, “EduMIPS64 Documentation,” 2017.
[17] R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-

lem,” Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

Proceedings of TENCON 2018 - 2018 IEEE Region 10 Conference (Jeju, Korea, 28-31 October 2018)

0814

